The Friendship That Made Google Huge (2022)

“We’ve been doing it since before Google,” Jeff said.

“But I don’t know why we decided it was better to do it in front of one computer instead of two,” Sanjay said.

“I would walk from my D.E.C. research lab two blocks away to his D.E.C. research lab,” Jeff said. “There was a gelato store in the middle.”

“So it’s the gelato store!” Sanjay said, delighted.

Sanjay, who is unmarried, joins Jeff, his two daughters, and his wife, Heidi, on vacations. Jeff’s daughters call him Uncle Sanjay, and the five of them often have dinner on Fridays. Sanjay and Victoria, Jeff’s eldest, have taken to baking. “I’ve seen his daughters grow up,” Sanjay said, proudly. After the Google I.P.O., in 2004, they moved into houses that are four miles apart. Sanjay lives in a modest three-bedroom in Old Mountain View; Jeff designed his house, near downtown Palo Alto, himself, installing a trampoline in the basement. While working on the house, he discovered that although he liked designing spaces, he didn’t have patience for what he calls the “Sanjay-oriented aspects” of architecture: the details of beams, bolts, and loads that keep the grand design from falling apart.

“I don’t know why more people don’t do it,” Sanjay said, of programming with a partner.

“You need to find someone that you’re gonna pair-program with who’s compatible with your way of thinking, so that the two of you together are a complementary force,” Jeff said.

They pushed back from the table and set out in search of soft-serve, strolling through Big Table and its drifting Googlers. Of the two, Jeff is more eager to expound, and while they walked he shared his soft-serve strategy. “I do the squish. I think the pushing-up approach adds stability,” he said. Sanjay, pleased and intent, swirled a chocolate-and-vanilla mix into his cone.

In his book “Collaborative Circles: Friendship Dynamics and Creative Work,” from 2001, the sociologist MichaelP. Farrell made a study of close creative groups—the French Impressionists, Sigmund Freud and his contemporaries. “Most of the fragile insights that laid the foundation of a new vision emerged not when the whole group was together, and not when members worked alone, but when they collaborated and responded to one another in pairs,” he wrote. It took Monet and Renoir, working side by side in the summer of 1869, to develop the style that became Impressionism; during the six-year collaboration that gave rise to Cubism, Pablo Picasso and Georges Braque would often sign only the backs of their canvases, to obscure which of them had completed each painting. (“A canvas was not finished until both of us felt it was,” Picasso later recalled.) In “Powers of Two: Finding the Essence of Innovation in Creative Pairs,” the writer Joshua Wolf Shenk quotes from a 1971 interview in which John Lennon explained that either he or Paul McCartney would “write the good bit, the part that was easy, like ‘I read the news today’ or whatever it was.” One of them would get stuck until the other arrived—then, Lennon said, “I would sing half, and he would be inspired to write the next bit and vice versa.” Everyone falls into creative ruts, but two people rarely do so at the same time.

In the “theory building” phase of a new science or art, it’s important to explore widely without getting caught in dead ends. François Jacob, who, with Jacques Monod, pioneered the study of gene regulation, noted that by the mid-twentieth century most research in the growing field of molecular biology was the result of twosomes. “Two are better than one for dreaming up theories and constructing models,” Jacob wrote. “For with two minds working on a problem, ideas fly thicker and faster. They are bounced from partner to partner. They are grafted onto each other, like branches on a tree. And in the process, illusions are sooner nipped in the bud.” In the past thirty-five years, about half of the Nobel Prizes in Physiology or Medicine have gone to scientific partnerships.

After years of sharing their working lives, duos sometimes develop a private language, the way twins do. They imitate each other’s clothing and habits. A sense of humor osmoses from one to the other. Apportioning credit between them becomes impossible. But partnerships of this intensity are unusual in software development. Although developers sometimes talk about “pair programming”—two programmers sharing a single computer, one “driving” and the other “navigating”—they usually conceive of such partnerships in terms of redundancy, as though the pair were co-pilots on the same flight. Jeff and Sanjay, by contrast, sometimes seem to be two halves of a single mind. Some of their best-known papers have as many as a dozen co-authors. Still, Bill Coughran, one of their managers, recalled, “They were so prolific and so effective working as a pair that we often built teams around them.”

In 1966, researchers at the System Development Corporation discovered that the best programmers were more than ten times as effective as the worst. The existence of the so-called “10x programmer” has been controversial ever since. The idea venerates the individual, when software projects are often vast and collective. In programming, few achievements exist in isolation. Even so—and perhaps ironically—many coders see the work done by Jeff and Sanjay, together, as proof that the 10x programmer exists.

Jeff was born in Hawaii, in July of 1968. His father, Andy, was a tropical-disease researcher; his mother, Virginia Lee, was a medical anthropologist who spoke half a dozen languages. For fun, father and son programmed an IMSAI 8080 kit computer. They soldered upgrades onto the machine, learning every part of it.

Jeff and his parents moved often. At thirteen, he skipped the last three months of eighth grade to help them at a refugee camp in western Somalia. Later, in high school, he started writing a data-collection program for epidemiologists called Epi Info; it became a standard tool for field work and, eventually, hundreds of thousands of copies were distributed, in more than a dozen languages. (A Web site maintained by the Centers for Disease Control and Prevention, “The Epi Info Story,” includes a picture of Jeff at his high-school graduation.) Heidi, whom Jeff met in college, at the University of Minnesota, learned of the program’s significance only years later. “He didn’t brag about any of that stuff,” she said. “You had to pull it out of him.” Their first date was at a women’s basketball game; Jeff was in a gopher costume, cheerleading.

Jeff’s Ph.D. focussed on compilers, the software that turns code written by people into machine-language instructions optimized for computers. “In terms of sexiness, compilers are pretty much as boring as it gets,” Alan Eustace said; on the other hand, they get you “very close to the machine.” Describing Jeff, Sanjay twirled his index finger around his temple. “He has a model going on as you’re writing code,” he said. “‘What is the performance of this code going to be?’ He’ll think about all the corner cases almost semi-automatically.”

Sanjay didn’t touch a computer until he went to Cornell, at the age of seventeen. He was born in West Lafayette, Indiana, in 1966, but grew up in Kota, an industrial city in northern India. His father, Mahipal, was a botany professor; his mother, Shanta, took care of Sanjay and his two older siblings. They were a bookish family: his uncle, Ashok Mehta, remembers buying a copy of “The Day of the Jackal,” by Frederick Forsyth, its binding badly worn, and watching the Ghemawat children read the broken book together, passing pages along as they finished. Sanjay’s brother, Pankaj, became the youngest faculty member ever awarded tenure at Harvard Business School. (He is now a professor at N.Y.U. Stern.) Pankaj went to the same school as Sanjay and had a reputation as a Renaissance man. “I kind of lived in the shadow of my brother,” Sanjay said. As an adult, he retains a talent for self-effacement. In 2016, when he was inducted into the American Academy of Arts and Sciences, he didn’t tell his parents; their neighbor had to give them the news.

In graduate school, at M.I.T., Sanjay found a tight-knit group of friends. Still, he never dated, and does so only “very, very infrequently” now. He says that he didn’t decide not to have a family—it just unfolded that way. His close friends have learned not to bother him about it, and his parents long ago accepted that their son would be a bachelor. Perhaps because he’s so private, an air of mystery surrounds him at Google. He is known for being quiet but profound—someone who thinks deeply and with unusual clarity. On his desk, he keeps a stack of Mead composition notebooks going back nearly twenty years, filled with tidy lists and diagrams. He writes in pen and in cursive. He rarely references an old notebook, but writes in order to think. At M.I.T., his graduate adviser was Barbara Liskov, an influential computer scientist who studied, among other things, the management of complex code bases. In her view, the best code is like a good piece of writing. It needs a carefully realized structure; every word should do work. Programming this way requires empathy with readers. It also means seeing code not just as a means to an end but as an artifact in itself. “The thing I think he is best at is designing systems,” Craig Silverstein said. “If you’re just looking at a file of code Sanjay wrote, it’s beautiful in the way that a well-proportioned sculpture is beautiful.”

At Google, Jeff is far better known. There are Jeff Dean memes, modelled on the ones about Chuck Norris. (“Chuck Norris counted to infinity... twice”; “Jeff Dean’s résumé lists the things he hasn’t done—it’s shorter that way.”) But, for those who know them both, Sanjay is an equal talent. “Jeff is great at coming up with wild new ideas and prototyping things,” Wilson Hsieh, their longtime colleague, said. “Sanjay was the one who built things to last.” In life, Jeff is more outgoing, Sanjay more introverted. In code, it’s the reverse. Jeff’s programming is dazzling—he can quickly outline startling ideas—but, because it’s done quickly, in a spirit of discovery, it can leave readers behind. Sanjay’s code is social.

“Some people,” Silverstein said, “their code’s too loose. One screen of code has very little information on it. You’re always scrolling back and forth to figure out what’s going on.” Others write code that’s too dense: “You look at it, you’re, like, ‘Ugh. I’m not looking forward to reading this.’ Sanjay has somehow split the middle. You look at his code and you’re, like, ‘O.K., I can figure this out,’ and, still, you get a lot on a single page.” Silverstein continued, “Whenever I want to add new functionality to Sanjay’s code, it seems like the hooks are already there. I feel like Salieri. I understand the greatness. I don’t understand how it’s done.”

On a Monday morning this spring, Jeff and Sanjay stood in the kitchenette of Building 40, home to much of Google’s artificial-intelligence division. Behind them, a whiteboard was filled with matrix algebra; a paper about unsupervised adversarial networks lay on a table. Jeff, wearing a faded T-shirt and jeans, looked like a reformed beach bum; Sanjay wore a sweater and gray pants. The bright windows revealed a stand of tall pines and, beyond it, a field. Wherever Jeff works at Google, espresso machines follow. On the kitchenette’s counter, a three-foot-wide La Marzocco hummed. “We’re running late,” Sanjay said, over a coffee grinder. It was eight-thirty-two.

After cappuccinos, they walked to their computers. Jeff rolled a chair from his own desk, which was messy, to Sanjay’s, which was spotless. He rested a foot on a filing cabinet, leaning back, while Sanjay surveyed the screen in front of them. There were four windows open: on the left, a Web browser and a terminal, for running analysis tools; on the right, two documents in the text editor Emacs, one a combination to-do list and notebook, the other filled with colorful code. One of Sanjay’s composition notebooks lay beside the computer.

“All right, what were we doing?” Sanjay asked.

“It’s just that if you lie to me about flossing how can I trust anything else you say?”

“I think we were looking at code sizes of TensorFlow Lite,” Jeff said.

This was a major new software project related to machine learning, and Jeff and Sanjay were worried that it was bloated; like book editors, they were looking for cuts. For this task, they’d built a new tool that itself needed to be optimized.

You might also like

Latest Posts

Article information

Author: Tyson Zemlak

Last Updated: 08/01/2022

Views: 6482

Rating: 4.2 / 5 (43 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Tyson Zemlak

Birthday: 1992-03-17

Address: Apt. 662 96191 Quigley Dam, Kubview, MA 42013

Phone: +441678032891

Job: Community-Services Orchestrator

Hobby: Coffee roasting, Calligraphy, Metalworking, Fashion, Vehicle restoration, Shopping, Photography

Introduction: My name is Tyson Zemlak, I am a excited, light, sparkling, super, open, fair, magnificent person who loves writing and wants to share my knowledge and understanding with you.